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A brief analysis of the method of calculation of the temperature fields of solid bodies of base geometry as ap-
plied to metallurgical production is made.

Introduction. In studying the stressed state of a solid body on the basis of the quasistatic theory of thermoe-
lasticity, one must primarily obtain the so-called "load" function (temperature T) by independent solution of the corre-
sponding boundary-value problem of heat conduction.

Study of the processes of heating and cooling of solid bodies is based on the theory of heat conduction, the
modern advances of which are reported in numerous works, for example, [1–4].

The analytical method of investigation of these processes assumes the following basic steps: formulation of
the problem and its solution, analysis of the data obtained, and numerical calculations of a specific object. All of them
reflect different aspects of a single generalizing notion — a mathematical model of the process.

The formulation of the corresponding boundary-value problem involves selection of a mathematical model cor-
responding, to a certain extent, to the physical process under study. This model includes the differential heat-conduc-
tion equation, the conditions of heat exchange on the body’s surface (boundary conditions), and the temperature state
of a body before the beginning of the process under study (initial condition).

In the general case where the temperature is a function of three coordinates and time and the thermophysical
characteristics can be assumed to be constant, the differential heat-conduction equation in a Cartesian coordinate sys-
tem has the form
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When the combining parameter m of the body’s shape is introduced (m = 0 for a plate, m = 1 for a cylinder,
and m = 2 for a sphere), the heat-conduction equation can be represented in generalized form [5, 6]:
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Expression (2) assumes the constancy of the parameters λ, c, γ, and a. If the thermophysical characteristics of the ma-
terial are coordinate dependent, this expression is complicated but remains linear; it becomes nonlinear (nonlinearity of
the first kind), when λ, c, and γ are temperature dependent.

Since the differential equation (2) has derivatives of second order with respect to coordinate and of first order
with respect to time, its general solution will contain the corresponding number of arbitrary integration constants (or
functions). One must determine these constants to obtain a unique solution. Therefore, in solving each specific problem
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of heat conduction, it is required that the corresponding uniqueness conditions, having the name of boundary (bound-
ary and initial) conditions, be added to the differential equation of conductive heat transfer.

As the initial condition we prescribe the temperature of the body at the initial instant of time t = 0:

T (r, t) t=0 = T (r, 0) = T0 (r) . (3)

Establishment of the boundary conditions is a more complex process. One recognizes four kinds of boundary
conditions of heat exchange.

Boundary conditions of the first kind prescribe the value of the temperature on the body’s surface:

T (r, t)r=R = Ts (t) . (4)

Thus, Ts(t) is the a priori known law of variation of the surface temperature of the body with time. The sim-
plest case of condition (4)

T (r, t)r=R = Ts = const

is possible either in high-intensity heat exchange, known as a "temperature shock", or in the case of artificial provision
of a constant surface temperature throughout the process of heat transfer (thermostatic character).

Boundary conditions of the first kind are used in problems of heating of furnace linings, heat treatment of a
metal, and hardening, heating, or cooling of bodies in liquid media.

With a boundary condition of the second kind, one prescribes the heat flux
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 = qs (t) . (5)

on the body’s surface.
A boundary condition of the third kind assumes that the relationship between the temperature and its normal

derivative (heat flux) on the body’s surface is known. If this relationship is linear, the boundary condition, in accord-
ance with the Newton–Richmann law of convective heat exchange, has the form
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 = α [Tm (t) − Ts (t)] . (6)

In individual cases, for α → ∞ and α = 0 the boundary condition of the third kind (6) becomes boundary conditions
of the first and second kind.

If the relationship between the temperature and the heat flux on the body’s surface is nonlinear, such a
boundary condition makes the entire boundary-value problem of heat conduction nonlinear (nonlinearity of the second
kind). The most widespread boundary condition describes, according to the Stefan–Boltzmann law, radiation heat ex-
change:
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Boundary conditions of the fourth kind reflect the so-called conjugate heat exchange, which assumes the ex-
istence of temperature and heat balances on the combined surface of contacting media. This is expressed by the fol-
lowing conditions:
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These conditions are most frequently employed in calculations of the processes of heat conduction in multilayer walls.
Sometimes, they are used in investigating convective heat exchange between a solid body and a liquid since the New-
ton–Richmann law does not necessarily give reliable results, which is explained by the difficulty and arbitrariness of
the determination of α.

Use of the Method of Equivalent Sources. We consider the application of the method named the "method
of equivalent sources" in the literature [6–8] to solution of the problems described above.

First of all, we introduce the relative excess function of temperature θ(ρ, Fo) = T (ρ − Fo) − T0/(T∗  − T0), the
dimensionless independent variables ρ = r/R and τ = Fo = at/R2, and the number Po = ωR2/[λ(T∗  − T0)]. Here T∗  =
const is a certain characteristic temperature, for example, the temperature of a burning medium Tm = const or the
body’s surface Ts = const.

For convenience of further calculations, we locate the origin of coordinates on the body’s surface (ξ = 1 − ρ).
In such a case, for Po = 0 the heat-conduction equation (2) can be represented as
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Then the boundary condition of the first kind acquires the form

θ (ξ, τ) ξ=0 = θs (τ) = θm (τ) , (9)

where θ(ξ, τ) = T(ξ, τ) − T0
 ⁄ T∗  and θm(τ) = Tm(τ) − T0

 ⁄ T∗ , T∗  being a certain (scale) temperature, for example, T0,
Tm(0), Tm

max, Tm
max − T0, Tm(0) − T0, and others.

The essence of the method of equivalent sources [6–8] is that it combines the method of successive approxi-
mations and integral methods [9, 10]. It does not necessitate a priori approximation of the temperature field and yet is
close to the well-known method of averaging of functional corrections of Yu. D. Sokolov [11].

The scheme of its employment is as follows. We apply the method of successive approximations to the initial
equation (8), writing it in the form
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We introduce into Eq. (10) the additional term fn+1(τ), which is equivalent to the residual occurring in Eq. (8) after
the substitution of the nth approximation into the right-hand side and the (n + 1)th approximation into the left-hand
side:
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Here the function fn+1(τ) acts as the "source."
Let it be necessary that the (n + 1)th approximation integrally satisfy the initial equation (8):
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Carrying out functional integration of (11) for ξ going from 0 to ξ, we have
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The difference between (12) and (13) leads to the expression
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which is an integral condition for determination of the unknown function fn+1(τ). Here l(τ) is a certain size of the

heated layer; a distinction needs to be drawn between the inertial step (0 ≤ τ ≤ τ0, 0 ≤ ξ ≤ l(τ)) in which heating fol-

lows the law of heating of a half-space, i.e., when the condition at infinity 
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 = 0 is replaced by the condition
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 = 0, and the ordered step (τ0 ≤ τ ≤ ∞, 0 ≤ ξ ≤ 1).

Thus, if the nth approximation of the problem in question is known, the (n + 1)th approximation of θn+1 is
determined by Eq. (11), the boundary conditions, and the integral expression (14).

Next, integrating (11) doubly with respect to ξ with allowance for the boundary conditions, we obtain the ex-
pression for θij. Substituting it into the integral condition (14), we arrive at the differential equation for fn+1(τ). The
process of determination of θn+1 ends with solution of this equation.

Let us consider a few examples of the employment of the method presented.
For problem (8), (9), in the inertial step we have
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After the integration of Eq. (16) with the initial condition l(0) = 0, by substitution of η = ξ/(2√τ ) we obtain
the formulas
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determining the depth l(τ) of heating and the duration τ0 of existence of the inertial step in each specific case of pre-
scription of the function θm(τ).

We note that the employment of another variant of the method yields

θ11 (ξ, τ) = θm (τ) (1 + m) (1 − l)2
 − 2 (1 − l)1+m

 (1 − ξ)1−m
 + (1 − m) (1 − ξ)2

(1 − m) + (1 + m) (1 − l)2
 − 2 (1 − l)1+m

(19)

or separately for the plate (m = 0) (see (15)), the cylinder (m = 1) (after the expansion of the indeterminacy of the
form 0:0)

θ11 (ξ, τ) = θm (τ) 
(1 − ξ)2

 − (1 − l)2
 + 2 (1 − l)2

 ln 
1 − l
1 − ξ

1 − (1 − l)2
 + 2 (1 − l)2

 ln (1 − l)
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and the sphere (m = 2)

θ11 (ξ, τ) = θm (τ) 
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 l
 .

The solution of (19) is somewhat more complex than that of (15) but it more accurately describes the tem-
perature field in the process of heating of the cylinder and the sphere, which can become substantial in the case of a
considerable thermal mass of the bodies.

In the ordered step (τ0 ≤ τ), the temperature function sought has the form

θ21 (ξ, τ) = θm (τ) − ∆θ21 (τ) [1 − (1 − ξ)2
] , (20)

where we have introduced the temperature-difference function
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Thus, we have obtained the approximate solution of problem (15) for general prescription of an arbitrary, if
only piecewise continuous and differentiable function θm(τ).

Examples illustrating a sufficient convergence of the approximate (21) and exact [3] solutions are given in [6,
12]. We consider some of them.

The surface temperature is constant, θs(τ) = θm = const, and T∗  = Tm − T0. This simplest case has practical
use in investigating the temperature state of bodies in a liquid medium, in holding a metal in continuous furnaces or
oil hardening, etc.

The solution of (15), (17), (18), and (21) is simplified to the form
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The surface temperature is a linear function:

Tm (t) = T0 + VTt ,   θm (τ) = Pd τ ,   Pd = 
VTR

2

aT
∗  .

This law is employed, for example, in investigation and calculations of the thermal processes of heating of a furnace
lining or in heat treatment of a metal with a required rate.

If, following [3], we introduce a new temperature function

θ
__

 (ξ, τ) = 
θm (ξ, τ)

Pd τ

and determine the temperature difference (21)
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∆θ
__

 (τ) = 
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 , (22)

from expressions (15) and (20) we obtain
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l (τ) = 2 √(1 + m) τ  ,   τ0 = 
1

4 (1 + m)
 .

(23)

The comparison of the exact [3] and approximate (22), (23) solutions in Fig. 1 shows a fairly high correspon-
dence of them.

We recall that a boundary condition of the second kind assumes the specific heat flux on the body’s surface
as a function of the coordinates and the time t in the general case and only of the time in one-dimensional bodies,
i.e., qs(t), to be a priori known (see (5)):

∂θ
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

 ξ=0

 = − Ki (τ) . (24)

Rather widespread is a particular case of the boundary condition of the second kind for qs = const:

∂θ
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

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 = − Ki = const .

Such boundary conditions are taken in investigating the processes of heating of a metal in soaking pits, chamber fur-
naces, and other heaters.

In the inertial step (0 ≤ τ ≤ τ0), for condition (24) we have

θ11 (ξ, τ) = 
1
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 Ki (τ) l (τ) 

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ξ
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 , (25)

Fig. 1. Change in the temperature function θ
__

(ξ, τ) at different points ξ of the
cross section of a plate (m = 0), a cylinder (m = 1), and a sphere (m = 2) ac-
cording to the exact (1) and approximate (2) solutions of the problem with
boundary conditions of the first kind.
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l (τ) = √ 6 (1 + m)
Ki (τ)

 ∫ 

0

τ

Ki (τ) dτ  , (26)

 ∫ 
0

τ0

Ki (τ) dτ = 
Ki (τ0)

6 (1 + m)
 . (27)

Expressions (25) and (26) determine the law of advance of the front l(τ) and the duration τ0 of this step. If Ki =
const, expressions (26) and (27) yield the formulas l(τ) = √ 6(1 + m)τ  and τ0 = [6(1 + m)]−1. As qs(t) = Vq t and Ki(τ)
= Pkτ, Pk = Vq R

3/(λaT∗ ), change linearly, we find l(τ) = √ 3(1 + m)τ  and τ0 = 1/3(1 + m).
At the instant τ = τ0 of completion of the inertial step, the temperature field is described by function (25), in

which we should set l(τ0) = 1:

θ11 (ξ, τ0) = 
1
2

 Ki (τ0) (1 − ξ)2
 .

For the ordered step (τ ≥ τ0), the solution of
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− f21 (τ) (1 − ξ2)

2 (1 + m)
 + B21 (τ)

with account for (24) acquires the form [6, 12]

θ21 (ξ, τ) = 
Ki (τ) (1 − ξ)2

2
 + B21 (τ) .

The function B21(τ) = θ2c(τ) is determined by the integral condition
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d

dτ
 ∫ 

0

1

θ21 (ξ, τ) dξ :

B21 (τ) = θ2c (τ) = (1 + m) ∫ 

τ0

τ

Ki (η) dη − 
Ki (τ) − Ki (τ0)

6
 . (28)

Then we can write

θ21 (ξ, τ) = θ2c (τ) + ∆θ21 (τ) (1 − ξ)2
 , (29)

where θ2c(τ) is determined from (28) and the temperature difference is

∆θ21 (τ) = θ2s (τ) − θ2c (τ) = 
Ki (τ)

2
 . (30)

Thus, we have obtained the approximate solution of the problem with boundary condition (24) for an arbitrary
law of variation of the surface specific heat flux qs(t).

In the particular case for qs(t) = const we have
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θ21 (ξ, τ) = Ki 
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and for qs(t) = Vqt and Ki(τ) = Pk(τ), Pk = VqR3/[λa(Tm − T)], we have

θ21 (ξ, τ) = Pk τ 

(1 − ξ)2
 − 

1 − 
τ0

τ
3

 + (1 + m) τ 






1 − 

τ0
2

τ2








2
 .

At the same time, we obtain

θ11 (ξ, τ) = Ki 
(1 + m) (1 − l)2

 − 2 (1 − l)1+m
 (1 − ξ)1−m

 + (1 + m) (1 − ξ)2

2 (1 − m) [1 − (1 − l)1+m
]

 , (32)
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The convergence of the exact and approximate solutions is clearly illustrated by Fig. 2.

Fig. 2. Time change in the temperature function θ
__

 = θ/Ki of the surface θ
__

s and
center θ

__
c of the cross section of a plate (m = 0), a cylinder (m = 1), and a

sphere (m = 2) according to the exact [3] (1) and approximate (31), (32) (2)
solutions.
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One more case of practical importance is considered in [6, 12]. As is well known, most of the exact solutions
of boundary-value heat-conduction problems in the expressions of specific heat fluxes contain exponential time func-
tions. Setting

Ki (τ) = Ki (0) exp (− ρτ) , (33)

in the general solution of (25)–(30), we determine [6, 9]

θ11 (ξ, τ) = 
Ki (0)

2
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ξ
l (τ)
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2

 exp (− ρτ) , (34)

θ21 (ξ, τ) = 
Ki
2
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
(1 − ξ)2

 + 
2 (1 + m)

ρ
 


exp (ρτ) − exp (− ρτ)







 exp (− ρτ) , (35)

l
2
 (τ) = √ 6 (1 + m)

ρ
 [exp (ρτ) − 1] ,   τ0 = 

1
ρ

 ln 



1 + 

6 (1 + m)
ρ




 . (36)

The exact solution of problem (24), (33), obtained in [13], has a rather complex form, whereas the approxi-
mate solution of (34)–(36) is much simpler and more practical. As far as the exactness is considered, the plots in Fig.
3 show a fairly high convergence of the approximations obtained.

Boundary conditions of the third kind assume that the nonstationary temperature Tm(t) of the heating medium
and the law of heat exchange between it and the body’s surface are known in the general case. Depending on this
law, the boundary conditions can be linear or nonlinear.

If the heat exchange between the body’s surface and the medium surrounding it follows the Newton–Rich-
mann law (6) with a nonstationary heat-transfer coefficient α(t)

∂θ
∂ξ



 ξ=0

 = − Bi (τ) [θm (τ) − θs (τ)] , (37)

this expression, in the theory of heat conduction, is called a "boundary condition of the third kind," where Bi(τ) =
α(τ)R ⁄ λ is the nonstationary analog of the Biot number.

Condition (37) is linear and describes convective heat exchange occurring in low-temperature furnaces or
zones, soaking pits and liquid media, in cooling of products by air, water, etc.

In the inertial step (0 ≤ τ ≤ τ0), substituting the function

θ11 (ξ, τ) = − 
1
2

 f11 (τ) l
2
 (τ) 


1 − 

ξ
l (τ)





2

into boundary condition (37), we obtain a relationship between f11(τ) and l(τ):

f11 (τ) = − 
2 Bi (τ) θm (τ)

l (τ) [2 + Bi (τ) l (τ)]
 .

Thereafter, the expression θ11(ξ, τ) and the equation 
d
dτ

[f11(τ)l3(τ)] = 6(1 + m)f11(τ)l(τ) are written as follows:
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
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 = ∆θ11 (τ) 



1 − 

ξ
l (τ)
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 , (38)

255



d

dτ
 

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

Bi (τ) θm (τ) l2 (τ)
2 + Bi (τ) l (τ)




 = 6 (1 + m) 

Bi (τ) θm (τ)
2 + Bi (τ) l (τ)

 . (39)

We consider certain particular cases [6, 12] where Eq. (39) allows solutions in general form. First of all,
when θm(τ) = const it has the exact solution which is determined by the transcendental expression

l
2
 (τ) + 

4l (τ)
Bi (τ)

 − 
8

Bi
2
 (τ)

 ln 



1 + 

Bi (τ) l (τ)

2




 = 12 (1 + m) τ . (40)

Furthermore, we can give ([6, 12]) two more approximate solutions of Eq. (39) for small and large Bi:

l (τ) = √ 6 (1 + m)
Bi (τ) θm (τ)

 ∫ 

0

τ

Bi (η) θm (η) dη  ,   Bi (τ) << 2 ;

l (τ) = √12 (1 + m)

θm
2

 (τ)
 ∫ 

0

τ

θm
2

 (η) dη  ,   Bi (τ) l (τ) >> 2 .

For moderate values of the Bi (τ) number we must solve Eq. (39) for each specific case of prescription of
the functions θm(τ) and Bi (τ).

The time τ0 of completion of the inertial step is determined when l(τ0) = 1:
for Bi << 2

  ∫ 

0

τ0

Bi (η) θm (η) dη = 
Bi (τ0) θm (τ0)

6 (1 + m)
 ;

for Bi >> 2

 ∫ 
0

τ

θm
2

 (η) dη = 
θm

2
 (τ0)

12 (1 + m)
 ;

for θm(τ) = const

Fig. 3. Change in the temperature function θ
__

 = ρθ/[2Ki(0)] of the surface (a)
and center (b) of the cross section of a cylinder according to the exact [13]
(1) and approximate (34)–(36) (2) solutions of problem (24), (33).
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τ0 = 
1

12 (1 + m)
 









1 + 

4

Bi (τ0)
 − 

8

Bi
2
 (τ0)

 ln 



1 + 

Bi (τ0)

2














 .

Setting τ = τ0 and l(τ0) = 1 in (38), we obtain the function of temperature at the end of the inertial step:

θ11 (ξ, τ0) = 
θm (τ0) Bi (τ0)

2 + Bi (τ0)
 (1 − ξ)2

 .

In the ordered step (τ ≥ τ0), after the employment of condition (37), the general approximate solution acquires
the form

θ21 (ξ, τ) = θm (τ) + 
f21 (τ)

2 (1 + m)
 




2 + Bi (τ)
Bi (τ)

 − (1 − ξ)2



 . (41)

Substituting function (41) into the integral condition f21(τ) = − ∫ 

0

l
∂θ21

∂τ
dξ, we obtain

θ21 (ξ, τ) = θm (τ) − ∆θ21 (τ) 




2 + Bi (τ)
Bi (τ)

 − (1 − ξ)2


 , (42)

where

∆θ21 (τ) = − 
f21 (τ)

2 (1 + m)
 = 











Bi (τ0) θm (τ0)
2 + Bi (τ0)

 + 1.5 ∫ 

τ0

τ

g (τ) exp 









 ∫ 

τ0

τ

h (τ) dτ









 dτ










 exp 










− ∫ 

τ0

τ

h (τ) dτ









 ;

g (τ) = 
Bi (τ) θm (τ)

3 + Bi (τ)
 ;   h (τ) = 3 

(1 + m) Bi
2
 (τ) − Bi (τ)

[3 + Bi (τ)] Bi (τ)
 .

Thus, the problem formulated has been solved in general form for arbitrary if only piecewise continuous and
differentiable functions Bi(τ) and θm(τ). For example, Fig. 4 [6, 12] gives changes in the temperature function θ

__
(ξ, τ)

Fig. 4. Change in the temperature function θ
__

(ξ, τ) = T(r, t)/[Tm(0)] of the sur-
face θ

__
s and center θ

__
c of the cross section of a plate according to the solutions

of the numerical method [14] (1) and (38), (42) (2) of the problem with
boundary conditions of the third kind (37).

Fig. 5. Change in the temperature function θ
__

(ξ, τ) = T(r, t)/[Tm(0)] of the sur-
face θ

__
s and center θ

__
c of the cross section of a cylinder for the data (43) (1)

and according to the nomograms of [15] (2).

257



= T(ξ, τ)/[Tm(0)] of the surface θ
__

s and the median plane θ
__

c of a plate (m = 0), plotted for the following data of con-
vective heat exchange: Bi(τ) = Bi(0) exp τ, Bi(0) = 0.5, θ

__
m(τ) = 1 + Pd τ, Pd = 0.075, and θ

__
(0) = 0.15.

We give one more example. In [6, 12], we have calculated, from the solution (38)–(42), the relative (T ⁄ Tm)
temperatures of the surface θ

__
s and center θ

__
c of the cross section of a cylinder (m = 1) for the following data:

Bi (τ) = Bi (0) + bτ ,   θ
__

 (0) = 0.2 ,   Bi (0) = 1.5 ,   b = 0.45 . (43)

The results of the calculations are given in Fig. 5.
Let us consider the case of convective heating (or cooling) at a constant coefficient of heat exchange (α =

const) and a nonstationary temperature Tm(t) of the heating medium. Setting Bi (τ) = Bi = const in the general solu-
tion (38)–(42), we have [6, 12]

θ1 (ξ, τ) = 













θm (τ) Bi l (τ)
2 + Bi l (τ)

 



1 − 

ξ
l (τ)





2

 ,   0 ≤ ξ ≤ l (τ) ,   0 ≤ τ ≤ τ0 ;

θm (τ) − ∆θ21 (τ) 




2 + Bi
Bi

 − (1 − ξ)2


 ,   0 ≤ ξ ≤ 1 ,   τ0 ≤ τ < ∞ ,

where

∆θ21 (τ) = 











θm (τ0) Bi

2 + Bi
 + 

1.5 Bi

3 + Bi
 ∫ 

τ0

τ

θm (τ) exp [µm (τ − τ0)] dτ









 exp [− µm (τ − τ0)] ; 

µm = 
3 (1 + m) Bi

3 + Bi
 .

The thickness l(τ) of the heated layer for moderate values of Bi is determined by the solution of the differ-
ential equation (39) or the above formulas for small and large Bi.

Despite their obvious simplicity, the approximate solutions of the problems of heat conduction with nonsta-
tionary linear boundary conditions obtained have an exactness sufficient for everyday practice and can be applied to
thermomechanical calculations.

NOTATION

a = λ ⁄ cγ, thermal diffusivity, m2/sec; Bi, Biot number; c, specific heat, J/(kg⋅K); Ki, Kirpichov number; l, di-
mensionless thickness of the thermal layer; m, parameters of the shape of a body; Pd, Predvoditelev number; Pk, Pos-
tol’nik number; Po, Pomerantsev number; qs, surface specific heat flux, W/m2; R, half the thickness of a plate, radius
of a cylinder or a sphere, m; r, absolute coordinate reckoned from the center of the body’s cross section, m; T(x, y,
z), temperature of a body at the point with coordinates x, y, z at the instant of time t, K; T0, initial temperature of a
body, K; Ts, surface temperature of a body, K; T1, temperature of the first body, K; T2, temperature of the second
body, K; Tm, prescribed temperature of the ambient medium, K; T∗ , characteristic temperature, K; t, time, sec; VT, rate
of change of the surface temperature of a body, K/sec; α, heat-transfer coefficient, W/(m2⋅K); γ, density, kg/m3; λ,
thermal conductivity, W/(m⋅K); η, Kirchhoff number; θ, relative excess temperature; σapp, apparent coefficient of radi-
ant heat exchange, W/(m2⋅K4); τ and Fo, dimensionless time; ξ, ρ, dimensionless coordinates; ω, specific power of the
internal heat sources, W/m3. Subscripts: n, approximation No.; s, body’s surface; c.s, combined surface of two bodies;
m, ambient medium; c, center of a body; the first numerical index (or numerical index before the letter) i (i = 1, 2)
denotes No. of the heating step (inertial i = 1 or ordered i = 2), the second numerical index j (j = 1, 2, 3, ...) denotes
No. of approximation; app, apparent; max, maximum.
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